NO generation and action during changes in salt intake: roles of nNOS and macula densa.
نویسندگان
چکیده
Micropuncture studies of single nephrons have shown that macula densa solute reabsorption via a furosemide-sensitive pathway activates nitric oxide (NO) generation via neuronal NO synthase (nNOS). This pathway is enhanced during salt loading. We investigated the hypothesis that changes in NO generation via nNOS in the macula densa contribute to changes in whole kidney NO generation and action during alterations in salt intake. Groups of rats ( n = 6-10) were equilibrated to high-salt (HS) or low-salt (LS) diets and were administered a vehicle (Veh), 7-nitroindazole (7-NI; a relatively selective inhibitor of nNOS), or furosemide (F; an inhibitor of macula densa solute reabsorption) with volume replacement. Compared with LS, excretion of the NO metabolites, NO2 plus NO3(NOX) was increased during HS (LS: 9.0 ± 0.5 vs. HS: 15.7 ± 0.8 μmol/24 h; P < 0.001), but this difference was prevented by 7-NI (LS: 7.4 ± 1.3 vs. HS: 9.4 ± 1.6 μmol/24 h; NS). During nonselective blockade of NOS with N G-nitro-l-arginine methyl ester (l-NAME), renal vascular resistance (RVR) increased more in HS than LS (HS: +160 ± 17 vs. LS: +83 ± 10%; P < 0.001). This difference in response to nonselective NOS inhibition was prevented by pretreatment with 7-NI (HS: +28 ± 6 vs. LS: +34 ± 8%; NS) or F with volume replacement (HS: +79 ± 11 vs. LS: +62 ± 4%; NS). In conclusion, compared with salt restriction, HS intake increases NO generation and renal action that depend on nNOS and macula densa solute reabsorption.
منابع مشابه
Salt-sensitive splice variant of nNOS expressed in the macula densa cells.
Neuronal nitric oxide synthase (nNOS), which is abundantly expressed in the macula densa cells, attenuates tubuloglomerular feedback (TGF). We hypothesize that splice variants of nNOS are expressed in the macula densa, and nNOS-beta is a salt-sensitive isoform that modulates TGF. Sprague-Dawley rats received a low-, normal-, or high-salt diet for 10 days and levels of the nNOS-alpha, nNOS-beta,...
متن کاملIncreased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback.
BACKGROUND The macula densa senses increasing NaCl concentrations in tubular fluid and increases afferent arteriole tone by a process known as tubuloglomerular feedback (TGF). Nitric oxide (NO) production by macula densa neuronal nitric oxide synthase (nNOS) is enhanced by increasing NaCl in the macula densa lumen, and the NO thus formed inhibits TGF. Blocking apical Na(+)/H(+) exchange with am...
متن کاملInhibition of apical Na+/H+ exchangers on the macula densa cells augments tubuloglomerular feedback.
NO produced by neuronal NO synthase (nNOS) in the macula densa blunts tubuloglomerular feedback (TGF). nNOS activity is strongly pH-dependent. Increasing luminal NaCl concentration increases nNOS activity, NO production, and apical Na+/H+ exchange. Na+/H+ exchange alkalinizes the macula densa. We hypothesized that inhibiting apical Na+/H+ exchange in macula densa cells would augment TGF by blun...
متن کاملRole of renal cortical cyclooxygenase-2 expression in hyperfiltration in rats with high-protein intake.
Renal cortical cyclooxygenase-2 (COX-2) is restricted to the macula densa and adjacent cortical thick ascending limbs (MD/cTALH). Renal cortical COX-2 increases in response to diabetes and renal ablation, both of which are characterized by hyperfiltration and reduced NaCl delivery to the MD due to increased proximal NaCl reabsorption. High-protein intake also induces hyperfiltration and decreas...
متن کاملNitric oxide regulates renal cortical cyclooxygenase-2 expression.
We have previously shown that cyclooxygenase-2 (COX-2) is localized to the cortical thick ascending limb of the loop of Henle (cTALH)/macula densa of the rat kidney, and expression increases in response to low-salt diet and/or angiotensin-converting enzyme (ACE) inhibition. Because of the localization of neuronal nitric oxide synthase (nNOS) to macula densa and surrounding cTALH, the present st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 274 6 شماره
صفحات -
تاریخ انتشار 1998